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‘ Abstract

This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments
have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco
Bay, California. The instruments will provide multiple use data that is important to geotechnical,
structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and
were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole
instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox
731 accelerometers, and is capable of recording a micro g from local M =1.0 earthquakes t0 0.5 g
strong ground motion form large Bay Area earthquakes. This report list earthquakes and stations
where recordings were obtained during the period February 29, 2000 to November 11, 2000.
Also, preliminary results on noise analysis for up and down hole recordings at Yerba Buena Island
is presented.

This work was performed under the auspices of the U.S. Department of Energy by University of
California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.



Introduction

This is a progress report on the Bay Bridges downhole network. The Bay Bridges down hole net-
work consists of recordings in bore holes that are drilled 100 ft into bedrock along and in the San
Francisco Bay (Figure 1). Between 1 and 8 instruments have been spaced along the Dumbarton,
San Mateo, Bay, Carquinez, and San Rafael bridges. Tables 1 - 5 list recording site information,
and Figure 1 shows instrument locations. In addition, two vertical arrays exist at the Dumbarton
bridge with additional sensors at the surface and at 200 ft (Table 1). Two sensors are currently
located at the surface at the Bay Bridge and are waiting drill holes. Prior to this study few seismic
recording instruments existed in bedrock in San Francisco Bay. This left a recording gap for engi-
neering studies of the Bay bridges and in seismicity studies of the Bay Area. The Bridges network
is part of a larger Hayward Fault Digital Network, see Figure 1.

There are six primary areas of research by LLNL that will be enhanced by the bore hole instru-
mentation: 1) developing realistic predictions of strong ground motion at multiple input points
along long span bridges, 2) examining ground motion variability in bedrock, 3) calibrating soil
response models, 4) developing bridge response calculations with multiple support input motions,
5) evaluate the seismicity of potentially active faults in the San Francisco Bay, and 6) record
strong ground motion.

Key to these studies is LLNL’s effort to exploit the information available in weak ground motions
(generally from earthquakes < M=3.0) to enhance predictions of seismic hazards. Although strong
ground motion recordings are essential to calibrate models and understand the hazard of future
earthquakes, we can obtain weak ground motion data immediately, whereas it may be years
before strong motion data is recorded. Following is an expansion of research goals utilizing
recordings from the Bridges Network.

1) prediction of strong ground motion: LLNL is developing a methodology of using weak
ground motion to synthesize linear response strong ground motion and incorporating this with
constraints on fault rupture scenarios to predict strong ground motion. These computations
provide estimates of the full wavetrain ground motion at multiple points along long span
structures.

2) ground motion variability: Recent studies have demonstrated the high variability of strong
ground motion with site conditions. Recordings along Bay bridges will be used both to
improve calculations of ground motions for bridges, and to research the spatial sensitivity and
significance of site variability to structures.

3) soils response: LLNL is researching means of using weak ground motion to constrain soils
models for non-linear computations. Current research has shown that low strain constitutive
properties are significant to non-linear ground motion computations, and that these values can
be significantly improved by an iterative process of matching weak motion solutions.

4) bridge response calculations: Current developments in structural dynamics allow non-linear,
three-dimensional calculation of bridge response. This requires realistic full wavetrain input
ground motions. LLNL is conducting research on the sensitivity of synthetic ground motions




to accurate non-linear computations, and the significance of utilizing multiple support input
calculations.

5) seismicity: Location of small earthquakes within the Bay that may indicate the existence of
active faults will be made possible with the instrumentation. Very small earthquakes (M<2)
cannot be recorded adequately to determine accurate locations by regional networks.

6) strong ground motion: Strong ground motion from previous earthquakes gives a good indica-
tion of what might be expected from future earthquakes. In addition recent earthquakes have
demonstrated the high variability of strong ground motion so that an array of strong ground
motion recordings will give a better understanding of the ground motion variability from
future earthquakes.

Instrumentation

As aresult of collaboration between the Berkeley Seismographic Station Hayward Fault Network,
Lawrence Livermore National Laboratory, and Caltrans, a seismic network of eight instruments
was installed in boreholes (one surface recorder awaits a borehole) along the SFOBB (Hutchings
et al, 1999). In addition, a temporary surface recorder was installed above the borehole on the east
side of YBI near Pier E2 of the SFOBB. Tables 1-5 list the recording site locations for instruments
at all bridges in this study. Table 6 lists instrument orientations, previously discussed in report for
1999. Figure 1 shows the location of the bridges.

The down-hole sensor package is manufactured at LBL. under the direction to Dr. Tom McEvilly,
and is the same package used by the USGS and LBL for the Hayward Fault Digital Recording
Network. This package contains three orthogonal Oyo HS-1 4.5 Hz geophones and a three orthog-
onal Wilcoxon 731s 10v/g accelerometers. The dynamic range of the Wilcoxon package is from a
micro-g to 0.5 g acceleration, and is flat to frequency response from 0.1 to 300 Hz. This allows
recording of M =1.0 to 0.5 g strong ground motion form large Bay Area earthquakes. Typically,
the Wilcoxon’s are recorded over two dynamic ranges to capture weak and strong ground
motions, and HS-1’s are used as a backup for weak ground motion recording. Portable Refraction
Technology 72A Data Acquisition Systems with 16 bit resolution and 200 Hz sampling are used
to record the data at most sites. Three sites utilize Quantera-4120 24-bit resolution data loggers
with 500 Hz recorders. The data is processed and managed at UC Berkeley. Tables 1-5 list site and
instrumentation information for the recording sites.

Table 7 lists the events located at the Bay Bridge during this period. Table 8 lists the events
recorded at each station.




Preliminary Results

A temporary surface recorder was installed above the borehole on the east side of YBI. Figure 2
shows the location of the borehole on YBI (located at 37.8143 N, -122.3582 W). The uphole site
is referred to as BE2U and the downhole site is referred to as BE2D. We identified 18 events that
were recorded on both the top and bottom of the borehole (Table 9). Locations and magnitudes list-
ed in Table 9 are from the Northern California Earthquake Data Center (UCB, 1999). The locations
of the 18 events are plotted in Figure 2.

BE2U has a reftek recorder and a S-6000 seismometer, and BE2D has a Quanterra recorder and
Wilcoxon 731s 10v/g accelerometers. BE2D also contains three orthogonal Oyo HS-1, 4.5 Hz geo-
phones for backup. The dynamic range of the Wilcoxon package is from a micro-g to 0.5 g accel-
eration, and typically records nearby microearthquakes greater than about M =1.0 as well as strong
ground motion. The S-6000 clips at accelerations near 0.002 g, so we are limited to recordings
smaller or distant events at BE2U.

We have removed the response of each system to get ground motion to the frequency limit of the

systems. The Wilcoxon accelerometers and Quanterra recorder (downhole system) are flat for ac-
celeration from 0.1 Hz to the anti-alias filter at 100 Hz. The low frequency limit is from a high pass
filter in the power box. It is down 3 db at 0.1 Hz and rolls off at 6 db per octave. The sensor has a
roll-off at 0.05 Hz. The data was corrected for the 0.1 Hz high pass filter, so it is band limited by

the sensor roll-off.

A portable Refraction Technology 72A Data Acquisition Systems with 16 bit resolution was used
to record the S-6000 seismometer at BE2U. The reftek recorder has a roll-off at 250 Hz and im-
poses an anti-aliasing filter at 40% of the sampling rate. We sampled the reftek data at 200 sps, so
it has a band limit of 80 Hz. The S-6000 seismometer is flat to velocity to at least 100 Hz and rolls
off at the low frequency end; it is down 3 db at 2 Hz and rolls off at 12 db per octavo. We have
corrected for this high pass filter, so that the response is effectively flat to DC.

Together, BE2D and BE2U have common data from 0.05 to 80 Hz. However, instrument and cul-
tural noise further limit the effective frequency band of the data. Therefore the signal to noise ratios
(SNR) were calculated and evaluated to determine the usable frequency band of the data recorded
for each earthquake. This is reported below and usable frequency band are listed for each event in
Table 1. The downhole ground motions were recorded as accelerations and were therefore integrat-
ed to velocities to be consistent with the uphole recordings.

Signal to Noise Ratios

For weak motion recordings, the noise in the signal is often the limiting factor for site response
studies. The SNR for each earthquake in this study was calculated by estimating the spectral con-
tent of the first 20 to 30 seconds of the record (depending on the length of noise recorded prior to
the earthquake signal) and a similar length of the earthquake signal. The two components of hori-
zontal motion were combined into a complex signal as described by Steidl et al (1996). Fourier am-
plitude spectra of velocity records are used for the analysis. The Fourier signal amplitude spectrum
was then divided by the Fourier noise spectrum for that earthquake. The SNR was calculated for
the uphole and downhole recorded motions. A limiting SNR of 3:1 was chosen to determine the
usable frequency band of each signal. Frequencies where the SNR was below 3 are believed to be



contaminated by the noise. The usable frequency bands for the uphole and downhole ground mo-
tions for each earthquake in this study are listed in Table 9.

Figure 3-20 show signal and noise for all the events. Examination of the noise and signal spectra
for all 18 events in this study results in the following conclusions. The SNR for the uphole record-
ings was generally greater than 3 over a frequency range of 0.5 to 30 Hz. The downhole recordings
had a much smaller usable frequency range with SNR equal to or above 3, from 1 to 8 Hz. How-
ever, the usable frequency range varies over the recorded earthquakes. The earthquakes with mag-
nitudes greater than or equal to 3.0 tended to have a wider frequency band of high SNR.

One of the potential advantages to downhole instruments is the reduced cultural noise. Unfortu-
nately for most of the recorded events in this study, instrument noise is more of a controlling factor.
Because the YBI uphole and downhole instruments are different, the usable frequency band is also
different for each instrument. The downhole Wilcoxon 731s 10v/g accelerometer can be limited by
noise at low frequencies, generally below 1 Hz, except for the larger events in the study where the
SNR is greater than 3 down to 0.3 Hz. On the other hand, the uphole S-6000 seismometer is less
limited at the low frequencies down to 0.2 Hz in some cases but can be limited at high frequencies
for small amplitude events. In particular, the S-6000 has a significant increase in noise for frequen-
cies above 30 Hz. The Wilcoxon instrument has less instrument noise at the higher frequencies and
therefore results in a higher SNR above 10 Hz than the downhole instrument. So unfortunately for
this uphole/downhole pair, the uphole instrument is limited by noise for high frequencies and the
downhole instrument is limited at low frequencies when recording weak motion. Both instruments
have high SNR for the larger earthquakes.
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Table 1: Dumbarton Bridge Recording sites

. . ] sensor hl, .

i.d. Sensors latitude | longitude depth (m) h2 + 090 Recording
Pier 01 37.49947 | 122.12755 :
DWA, |S-13 00.0 m, abut. N320°E | 07/94 - 09/94
DWS Wil-731-200, HS-1 01.5, Pier 01 000° 09/94 - 09/94
DWN | Wil-731-200, HS-1 716, --- 09/94 - 09/94
DWB HS-1, HS-1 228.0, “ 033° 08/93 - present
Pier 27
DMB Wil-731,HS-1 37.50687 | 122.11566 | 189.2, Pier 27 NO20°E | 07/94 - present
CAP Wil-731-200, HS-1 | 37.517 122.104 pile cap, Pier 27 07/92 - 11/92
Pier 44 37.51295 | 122.10857
DES Wil-731-200, HS-1 01.5, Pier 44 NOOO°E | 11/94 - 09/94
DEM Wil-731-200,HS-1 62.5 -— 09/94 - 09/94
DEB Wil-731, HS-1 1579 097° 07/94 - present




Table 2: Bay Bridge Recording sites

i.d. sensors latitude | longitude | depth (m) Sﬁ; s_fi)g(l)’ Recording
SFA S-6000 37.7861 | 122.3893 00.0 m, N143°E | 6/98-present
BBW2 Wil-731A,HS-1 | 37.79120 | 122.38525 57.6 NO42°E | 4/96-present
BBWS Wil-731A,HS-1 | 37.8010 | 122.3737 36.3 N142°E | 1/97-present
YBA Wil-731A,HS-1 | 37.8094 | 122.3645 3.0 N150°E | 6/98-present
BE2U S-6000 37.81427 | 122.35815 0.00 N220°E | 7/96-present
BE2D Wil-731A,HS-1 | 37.81427 | 122.35815 N165°E | 7/96-present
(YBIB) 60.96
BEO7 Wil-731A,HS-1 | 37.81847 | 122.34688 134.0 N117°E | 2/96-present
BE17 Wil-731A,HS-1 | 37.82086 | 122.33534 160.0 N168°E | 8/95-present
BE23 HS-1 37.82167 | 122.32867 150 N---°E 3/94-10/95

Table 3: San Rafael Bridge Recording sites
id. Sensors latitude | longitude depth slf; s_:_’i)}gl(l)’ Recording
P34 Wil-731A,HS-1 | 37.93583 | 122.44540 | 109.0 m 8/97-present
PS8 Wil-731A,HS-1 | 37.93372 | 122.41313 | 44.0 m NO°E 6/97-present
Table 4: San Mateo Bridge Recording sites
id. sensors latitude | longitude | depth Sﬁ;?gg(l)’ Recording
P343 Wil-731A,HS-1 | 37.59403 | 122.23242 | 298.0 m NO°E not recorded




Table 5: Carquinez Bridge Recording sites

. . . sensor hl, .
i.d. Sensors latitude | longitude | depth h2 + 090 Recording
CRQB Wil-731A,HS-1 38.05591 | 122.22402 | -——--- NO°E 6/98-present

Table 6: Sensor Orientation Calculations, Bay Bridge

Orientations of
up on channel 2;
ch3 = ch2 + 090;
Channel 1 is
vertical, positive
down, except **

SEA**

BBW2

BBW5

YBA**
BE2D

BE2U
BEO7

BE17
BE23

9812041216

N1i43E

NO42E

N142E

NI15S0E | N165E

N310E | N117E

NI168E

+prior 08/24/99
since 08/24/99

*prior 01/15/97
since 01/15/97

N131E
NI136E

NI143E
N310E

Vertical

vertical: up on
channel-1

DD

DD

DD DD

DD




Table 7: Events recorded by Bay Bridge Network

Earthquake Time Latitude Longitude | Depth Mag Fault
2000/02/29 | 10:48:00.58 | 37.7980 -121.9428 15.94 2.05 Calaveras
2000/02/29 | 11:10:09.72 | 37.8682 -122.2392 10.52 2.15 Hayward
2000/03/02 | 09:22:12.21 | 37.2578 -121.6400 6.01 1.45 Calaveras
2000/03/28 | 21:03:07.27 | 37.6330 -122.0203 6.04 3.04 San Andreas
2000/04/03 | 06:08:35.89 | 37.4342 -121.7775 9.00 1.56 Calaveras
2000/04/06 | 19:03:06.54 | 38.3492 -122.1980 8.04 2.61 Hayward
2000/04/09 | 21:25:22.16 | 38.0880 -122.4033 13.31 2.40 San Andreas
2000/04/10 | 13:05:29.64 | 37.4747 -121.7150 9.70 3.20 Calaveras
2000/04/11 | 14:12:15.93 | 37.8447 -122.0097 14.87 2.52 Calaveras
2000/04/14 | 12:22:31.77 | 37.9830 -122.0433 15.76 3.19 Calaveras
2000/04/14 | 17:49:25.62 | 37.6038 -121.9708 9.89 3.04 Calaveras
2000/04/24 | 08:03:51.47 | 37.4018 -121.7267 5.45 1.24 Calaveras
2000/04/29 | 06:04:49.01 | 37.7378 -122.5512 7.22 2.51 San Andreas
2000/05/02 | 10:14:45.67 | 37.9222 -122.2905 6.54 2.19 San Andreas
2000/05/03 | 22:05:11.80 | 37.7277 -122.1177 8.46 2.28 Hayward
2000/05/14 | 14:11:49.05 | 37.3338 -122.0613 4.06 2.39 Hayward
2000/05/21 | 05:07:02.82 | 37.7737 -122.5888 6.62 2.13 San Andreas
2000/05/23 | 12:35:06.85 | 37.7113 -122.1062 6.04 2.60 Hayward
2000/05/25 | 06:43:08.73 | 37.8652 -122.2380 9.59 1.88 Hayward
2000/05/26 | 06:21:15.74 | 37.9898 -122.1818 9.10 2.17 Hayward
2000/05/26 | 14:23:20.40 | 37.9517 -122.7218 7.67 2.28 San Andreas
2000/05/28 | 04:30:06.37 | 37.5677 -122.4317 10.11 1.21 San Andreas
2000/05/30 | 02:10:58.51 | 37.3072 -122.0778 4.97 2.58 Hayward
2000/05/30 | 08:10:41.59 | 37.3482 -121.7230 9.82 1.25 Hayward
2000/06/02 | 10:17:24.38 | 37.7512 -122.1512 5.71 2.65 Hayward
2000/06/08 | 05:53:27.89 | 37.2958 -121.6752 5.11 2.20 Hayward




Earthquake Time Latitude Longitude | Depth Mag Fault

2000/06/13 | 11:48:11.55 | 37.3105 -121.6805 7.51 3.47 Hayward

2000/06/17 | 00:52:09.94 | 37.7203 -122.5725 3.28 2.02 San Andreas

2000/06/18 | 11:13:26.28 | 37.7652 -121.9290 14.25 0.81 Calaveras

2000/06/18 | 17:16:07.64 | 37.9095 -122.2938 342 1.33 Hayward

2000/06/25 | 07:23:18.26 | 37.1240 -121.5265 7.83 3.63 Calaveras

2000/06/25 | 16:03:21.39 | 37.7318 -122.5395 5.96 1.14 San Andreas

2000/06/25 | 16:04:35.30 | 37.7337 -122.5397 5.75 1.56 San Andreas

2000/07/03 | 22:13:18.06 | 37.3420 -121.7055 8.55 3.33 Hayward

2000/07/04 | 10:08:13.43 | 37.8030 -122.0227 8.82 1.75 Hayward

2000/07/07 | 12:08:22.35 | 37.7160 -122.5442 10.33 1.58 San Andreas

2000/07/09 | 14:43:47.46 | 37.8035 -122.1823 8.38 1.77 Hayward

2000/07/11 | 23:40:20.68 | 37.1282 -121.5302 7.46 2.32 Hayward

2000/07/14 | 11:23:16.39 | 38.0688 -122.2405 7.63 1.97 Hayward

2000/07/15 | 07:29:20.47 | 37.8893 -122.2603 4.72 1.07 Hayward

2000/07/15 | 11:56:38.97 | 37.9752 -122.0335 15.43 3.61 Hayward

2000/07/18 | 02:02:01.45 | 37.6095 -122.4752 8.33 1.83 San Andreas

2000/07/31 | 03:01:07.83 | 37.4185 -121.7667 7.76 2.25 Calaveras

2000/08/22 | 10:00:57.97 | 38.4065 -122.1558 3.64 0.62 Hayward

2000/09/02 | 08:00:30.44 | 37.9887 -122.0557 15.63 2.35 Calaveras

2000/09/02 | 21:58:47.87 | 37.9877 -122.0538 16.23 2.51 Calaveras

2000/09/03 | 08:36:30.09 | 38.3788 -122.4127 10.21 5.17 Hayward

2000/09/03 | 09:11:15.97 | 38.3922 -122.4032 6.10 1.64 Hayward

2000/09/03 | 21:00:03.07 | 38.3648 -122.3998 8.58 2.31 Hayward

2000/09/09 | 03:02:16.36 | 37.6513 -122.0443 5.23 2.03 Hayward

2000/09/10 | 12:37:19.34 | 38.3817 -122.4088 7.13 2.55 Hayward

2000/09/12 | 06:55:26.17 | 37.5533 -121.6765 5.18 2.49 Calaveras

2000/09/18 | 22:31:47.99 | 37.9173 -122.3017 1.56 1.08 Hayward




Earthquake Time Latitude Longitude | Depth Mag Fault
2000/09/23 | 23:16:52.87 | 37.8937 -122.2188 7.55 2.14 Hayward
2000/09/24 | 22:27:46.52 | 37.8773 -122.2313 10.02 1.53 Hayward
2000/09/27 | 10:18:55.23 | 37.8500 -122.2325 6.07 2.26 Hayward
2000/09/28 | 08:44:06.49 | 37.3593 -121.7262 6.96 2.48 Hayward
2000/10/03 | 11:30:54.65 | 37.6400 -122.4945 8.09 1.99 San Andreas
2000/10/27 | 05:47:56.59 | 37.7603 -122.1677 6.01 2.28 Hayward
2000/10/30 | 20:33:56.72 | 37.6695 -122.4938 11.80 2.06 San Andreas
2000/11/12 | 17:49:56.34 | 37.9705 -122.3407 6.89 2.55 Hayward




Table 8: Events recorded at each station.
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Earthquake BBW2 | BBWS5 BEO7 BE17 BE23 SFA YBA
0009242227 X

0009271018 X X

0009280844 X

0010031130 X

0010270547 X

0010302033 X

0011121749 X
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Figure 1: Map of the San Francisco Bay. (*Bridge not used in the bridge network study.)
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